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Many people have asked me in connection with my previous articles 
why one could not make a transition from classical to quantum theory in 
generalized coordinates via the covariant derivative. I will show why one 
cannot, in this note, and also show an interesting connection between the 
covariant derivative operator and the 'measurable' generalized momentum 
operator. 

Consider the classical Hamiltonian of  a free particle in generalized 
coordinates, H. H is given by (Brillouin, 1949) 

H =  ~ gmnpmpn (1) 
m,a 

where Pm is the canonical momentum and gmn is a function of the generalized 
coordinates {q~}. In Cartesian coordinates, in order to produce the quantum 
Hamiltonian operator, one merely substitutes for p,,, Pm=-ihO/Oxm, into 
equation (1). i t  would seem that in generalized coordinates, in order to 
produce the quantum Hamiltonian operator, one would substitute in 
equation (1), p,, = -ihD/Dq,,, where D/Dqm denotes the covariant deriva- 
tivet given by (Brillouin, 1949) 

Dqm - Oqm Oqm �89 "~. g'J ~,d ~lrn / 

where F~ is the familiar Christoffel symbol used in Riemannian geometry. 
It is both interesting and instructive to note that no matter what ordering 
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"~ It is seen from Gruber (1971) that one cannot simply substitute for pro, the operator 
P m =  - i h  O/Oqra. 
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we choose for the operators D/Dqm, D/Dqn, and g,nn in equation (1), that is 

Ho= E g . .  D D or H o = ~ f  D g"n D , etc. 
m,. ~ q ~ .  ~ N :  

m j n  

even if  we take Hermitian parts of H o, we will not arrive at the correct 
quantum Hamiltonian, which is a transformation f r o m - h  z V 2 to generalized 
coordinates. For  example if 

/ ~176 
H o = Hermitian part of t -h2m,n ~ g"" D-qm Dqq. 

we find 

~ .  _ 1  ~ gl ~Oq.[~,, [Og g . . ]  (g-1 = a/det gik) 

The correct quantum Hamiltonian H '  is given by (Blokhinstev, 1964) 

H'= ~ g" ~2 ag" a !~g g , . .~  
..,, Oqm Oqn [ Oq n Oq,,, + g Oqn Oqm 

Thus there is an extra term in Ha, namely, the term 

l w l  o r0g ..7 

The interesting and rather mystifying thing is that the 'measurable' 
momentum operator which is the Hermitian part of p ,  =- iha/Oq~ (see 
Gruber, 1972a), is the Hermitian part of the covariant derivative operator. 

Proof: In our previous notation (Gruber, 1972a, b), the Hermitian part 
o f - i h D / D q ,  that is, [-ihD/Dq~] n is given as:~ 

. D n 1 . D I 

g oqd g oqd J 
l r  . log  ililOgl 

= 2 [ P ' t - t h g O q i + P i +  gaq,j 

= �89 p i t  + p 3  = (p,)n Q.E.D.  
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:~ Here, At denotes adjoint of A. 


